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This project entails a simple goal: to
process data and turn it into a more visual
form so it can be interpreted. For this
purpose, the programming language
Python was adept because of its painless
syntax and its built-in libraries. Starting
with the basic syntax of python, we

eventually built towards learning libraries,

their features, sources of astronomical
data, a bit of image processing and
concluded by using these on the Pleiades
star cluster.
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WEEK?1: Python Basics

Astronomy Club Summer Project 2021
Computational Astrophysics

Abstract

' Material-httos ;//github.com/astroclubiitk/computational-astrophysics

The following article covers basic introduction and understanding of tools to be used in project. It covers
elementary overview of Python and Jupyter Notebook, followed by getting hold onto some standard Python
libraries, namely Numpy, Pandas and Matplotlib. Essence was to get well acquainted with syntax of a new
language and appreciate its applicability in astrophysical domain.
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Week 1
1. Python Basics

1.1 Introduction
» Python is a general-purpose interpreted, interactive,
object-oriented, and high-level programming language.
It was created by Guido van Rossum during 1985- 1990.
Python got its name from “Monty Python’s flying cir-
cus”. Python was released in the year 2000.

1.2 Features of Python
* Easy-to-learn:- Python is clearly defined and easily
readable. The structure of the program is very simple.

It uses few keywords.

» Easy-to-maintain:-Python’s source code is fairly easy-
to-maintain.

* Interpreted:-Python is processed at runtime by the
interpreter. So, there is no need to compile a program
before executing it. You can simply run the program.

» Extensible:- Programmers can embed python within
their C,C++,Java script ,ActiveX, etc.

* Scalable:- Python provides a better structure and sup-
port for large programs than shell scripting.

* Object-Oriented:- Python supports Object-Oriented
style or technique of programming that encapsulates
code within objects.
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Figure 1. Python Feature

1.3 Application

Python offers numerous options for web development.
For instance, you have Django, Pyramid, Flask, and
Bottle for developing web frameworks and even ad-
vanced content management systems like Plone and
Django CMS.

Python’s simplicity, consistency, platform independence,
great collection of resourceful libraries, and an active

community make it the perfect tool for developing Al

and ML applications.

Software Developers use Python as a support language
for build control, testing, and management.

Python has a modular architecture and the ability to
work on multiple operating systems. These aspects,
combined with its rich text processing tools, make
Python an excellent choice for developing desktop-
based GUI applications.

Python provides the skeleton for applications that deal
with computation and scientific data processing. Apps

like FreeCAD (3D modeling software) and Abaqus(finite

element method software) are coded in Python.

Python is also heavily used in Game Development ,
Enterprise and Business applications etc.

1.4 Modes of Python Interpreter
Python Interpreter is a program that reads and executes
Python code. It uses 2 modes of Execution.

* Interactive Mode: - Interactive Mode allows us to
interact with OS. When we type Python statement, in-
terpreter displays the result(s) immediately.

* In script Mode: - In script mode, we type python
program in a file and then use interpreter to execute
the content of the file. Scripts can be saved to disk for
future use.

1.5 Variables in Python

A variable allows us to store a value by assigning it to a name,
which can be used later.

Python Code:

INPUT:

a=10

print(a)

OUTPUT:

10

1.6 Input and Output

Input is data entered by user (end user) in the program. In
python, input () function is available for input. Output is dis-
played to the user using print statement.



Python Code:

INPUT:

a = input("Enter number: )
print(”You have entered ”, a)
OUTPUT:

Enter Number: 10

You have entered 10

1.7 Comment

Comments are parts of python code which the programmer
wants to be ignored by the interpreter. A ’# symbol is used
in the beginning of a comment.

Python Code:

INPUT:

a="HELLO WORLD?” #This is a comment .

print(a) #This is a print statement.

OUTPUT:

HELLO WORLD

1.8 Datatypes in Python

Data types are the classification or categorization of data items.
It represents the kind of value that tells what operations can
be performed on a particular data. Python has 5 standard
datatypes.

.
Python - Data Types
Numeric Dictionary Boolean Set Se%n;::ce
{ Interger ] [ Float ] | Strings J [ Tuple
=3 s
oG

1.8.1 Numbers:

Number data type stores Numerical Values.This data type is
immutable [i.e. values/items cannot be changed]. Python sup-
ports integers, floating point numbers and complex num-
bers.

Integers:

They are often called Integers or int. These are negative or
positive whole numbers with no decimal point. e.g. 69, 3, 17,
-12 etc.

Float:

These are called float . These are numbers with decimal inte-
gers . e.g. 56.4, 23.66 etc.

Complex Numbers:

These numbers are of the form ’a + bj’. ’a’ is the Real part
and ’b’ is the imaginary part and ’j’ represents square root of
-1.
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1.8.2 Sequence:

A sequence is an ordered collection of items, indexed by
positive integers.There are three types of sequence data type
available in Python.

* Strings : A String in Python consists of a series or
sequence of characters - letters, numbers, and special
characters. Individual character in a string is accessed
using a subscript (index), which starts from 0. Strings
are marked by quotes (””,’ ). e.g. "Hello World” ,
”Cat” etc.

Lists : List is an ordered sequence of items. It can
be written as a list of comma-separated items (values)
between square brackets [ ]. Items in the lists can be
of different data types such as int , float , strings etc.
e.g. Listl =[ 1, 12.3, "Giraffe” ]

Tuple : A tuple is same as list, except that the set of
elements is enclosed in parentheses instead of square
brackets. A tuple is an immutable list. Tuples can be
used as keys in Dictionaries but lists cannot.

e.g. Tupl = (1, 12.3, ’Giraffe” )

1.9 Boolean:

Boolean data type have two values. They are 0 and 1. 0
represents False and 1 represents True.

e.g.

3==

False

1.10 If Else Statement
Syntax:

" condition 1 Ty
. . L]
y Statement 2

" Statement 1 ; 2

I

l

Figure 2. Flowchart of IF ELSE statement

if(condition1):
Statement
else(condition?2):
Statement2
e.g.-
Python Code:
INPUT: a = float(input(”Enter Number: ”))
b = float(input("Enter Number: *))
if (a > b):
print(”Greater”)
else:
print(”Smaller”)



OUTPUT:

Enter Number: 10
Enter Number: 13.6
Smaller

1.11 While Loop

While loop in Python is used to repeatedly executes set of
statement as long as a given condition is true.

Syntax:

Flowchart:

r0.5 Ini-
tial Value
while(condition1):
body of while loop
increment
Exit
e.g.
Python Code:
Program to find sum of first n natural numbers:
INPUT:
n=int(input(’Enter n:”"))
i=1
sum=0
while(i<=n):
sum=sum-+i
i=i+1
print(’Sum of first”, n , “natural number is:”, sum)
OUTPUT:
Enter n: 10
Sum of first 10 natural numbers is : 55

2. Numpy

2.1 Introduction

NumPy package is imported (usually under the np alias) using
the following syntax:] Numpy is the core library for scientific
computing in Python. It provides a high-performance multidi-
mensional array object, and tools for working with these ar-
rays. It also contains functions for mathematical computations
such as linear algebra, Fourier transform, matrices,random
number capabilities etc. Along with being speed and mem-
ory efficient, NumPy works well with major libraries such as
SciPy, MatPlotLib, Pandas.
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NumPy package is imported (usually under the np alias)
using the following syntax:

In [1]: import numpy as np

Figure 3. Importing Numpy

2.2 Numpy Arrays
2.2.1 Creation
Example: Create a 2-D array containing two arrays with
the values 1,2,3 and 4,5,6.]The array object in NumPy is
called ndarray. In NumPy, dimensions are called axes and
the number of axes is called rank. We can create a NumPy
ndarray object by using the array() function.

Example: Create a 2-D array containing two arrays with
the values 1,2,3 and 4,5,6.

A=np.array([[1,2,3],[4,5,6]])
print(A)

[[12 3]
[4 5 6]]

Figure 4. Creating Array

* NumPy also offers several functions to create arrays
with initial placeholder content. For example: np.zeros,
np.ones, np.full, np.empty, etc.

distance=np.zeros((96,1),dtype=np.float32).reshape(96,1)
k=0
while(k<96):
distance[k,0] = 10**logd[k,0]
k=k+1
print(distance)

Figure 5. Creating np.zeros initially

2.2.2 Reshaping
* We can use reshape method to reshape an array. Con-
sider an array with shape (al, a2, a3, ..., aN). We can
reshape and convert it into another array with shape (b1,
b2, b3, ..., bM). The only required condition is: al x
a2xa3... xaN=blxb2xb3... xbM. (i.e original
size of array remains unchanged.)

2.2.3 Flattening
* We can use flatten method to get a copy of array col-
lapsed into one dimension. It accepts order argument.
Default value is ‘C’ (for row-major order). Use ‘F’ for
column major order.



>»>> data.reshape(2, 3)
array([[1, 2, 3],

[4, 5, 6]1)
»>»> data.reshape(3, 2)

array([[1, 2],
[3, 4],
[5, 6]1)

Figure 6. reshaping array

You can index and slice NumPy arrays in the same ways you can slice Python lists.

>>> data = np.array([1, 2, 3])

>>> data[1]
2

>>> data[@:2]
array([1, 2])
>>> data[1:]

array([2, 3])
>>> data[-2:]

array([2, 3])

Figure 7. Indexing

2.3 Indexing and Slicing
Refer Figure:6 where data is a 3*2 matice containing inte-
gers from 1 to 6 in order.

2.4 Datatypes
* Every numpy array is a grid of elements of the same
type. Numpy provides a large set of numeric datatypes
that we can use to construct arrays. Example:

import numpy as np
B=np.array([1,2,3])
B.dtype

dtype('int32")
Figure 8. Datatype

2.5 Array Math
2.5.1 Operations on single array
* We can use overloaded arithmetic operators to do element-
wise operation on array to create a new array. In case
of +=, -=, *= operators, the exsisting array is modified.

2.5.2 Unary Operators
e Many unary operations are provided as a method of
ndarray class. This includes sum, min, max, etc. These
functions can also be applied row-wise or column-wise
by setting an axis parameter.

2.5.3 Binary Operators
» These operations apply on array elementwise and a
new array is created. You can use all basic arithmetic
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operators like +, -, /, , etc. In case of +=, -=, = operators,
the exsisting array is modified.

2.5.4 Universal Functions
The aforementioned operations can also be done using ufuncs
like np.add, np.subtract, np.multiply, np.divide, np.sum, etc.
]NumPy provides familiar mathematical functions such as sin,
cos, exp, etc. These functions also operate elementwise on an
array, producing an array as output.

The aforementioned operations can also be done using
ufuncs like np.add, np.subtract, np.multiply, np.divide, np.sum,
etc.

2.6 Broadcasting
* Broadcasting is a powerful mechanism that allows numpy

to work with arrays of different shapes when perform-
ing arithmetic operations. Frequently we have a smaller
array and a larger array, and we want to use the smaller
array multiple times to perform some operation on the
larger array. Numpy broadcasting allows us to perform
this computation and helps making the code concise
and faster.

3. Pandas

3.1 Panda Library
* Dealing with dataframes? *Pandas’ comes to your res-
cue. It is fast, flexible and very powerful as well as easy
to use open source data analysis and manipulation tool,
built on top of Python programming language.

import pandas as pd
Figure 9. Importing Pandas

3.2 Why Pandas?

* Pandas allows us to analyze big data and make conclu-
sions based on statistical theories. it can clean messy
data sets, and make them readable and relevant, and
relevant data is very important in data science. Un-
like NumPy library which provides objects for multi-
dimensional arrays, Pandas provides in-memory 2d ta-
ble object called Dataframe. It is like a spreadsheet
with column names and row labels.

3.3 Key Features
1. Fast and efficient DataFrame object with default and
customized indexing.

2. Data alignment and integrated handling of missing data.
3. Group by data for aggregation and transformations.
4. High performance merging and joining of data.

5. Time Series functionality.



3.4 Importing file as dataframe :
df = pd.read_csv('Astrosat_Catalog.csv')

ra dec Source_Name SIMBAD_Name Final_Type Astrosat_Flag
0 8.233750 -73.805278 J0032.9-7348 RX J0032.9-7348 HMXB 0
1 11.210000 33.021389 0042+323 4U 0042+32 LMXB 0
2 12260417 -72.847778 J0049-729 RX J0049.0-7250 HMXB 0
3 12373333 -73.182222 J0049-732 [MA93] 300 HMXB 0
4 12686250 -73.268056 JO050.7-7316 V* DZ Tuc HWMXB 0

Figure 10. CSV in Jupyter notebook

3.5 Operations on an imported CSV file :

df[['ra’, dec’,"Source Name']]
df.head(n) or df.tail(n)
df.iloc[10:20)
df.loc[df['ra’]>150,[ 'ra’, dec']] #Select co "dec’ with value of ra>150

df.insert(7, 'decl’,df['dec']*np.pi/180) #Creating new column at index 7, name 'decl’, value as mentioned.

specific names

Figure 11. Some common functions provided by Pandas

3.6 Creating a Dataframe and exporting it to CSV
format :

Data = []

for i in range(1,111):
messier = []
Messier = str("Messier ") + str(i)
messier.append(Messier)
coordinates = SkyCoord.from_name(Messier)
messier.append(coordinates.ra.degree)
messier.append(coordinates.dec.degree)
Data.append(messier)

df = pd.DataFrame(Data, columns=['Messiers’, 'RA", 'DEC'])

df.to_csv("Messiers.csv”,index=None)

Figure 12. Creating a list of Messiers and their coordinates
using Astropy library functions and storing it in form of
Dataframe using Pandas and saving it as CSV file

3.7 Basic functionalities offered by Pandas :
* size: Returns the number of elements in the underlying
data.

* values: Returns the series as ndarray.
e T: Transposes rows and columns.
* dtypes: Returns the data type.

* ndim: Returns the number of dimensions of underly-
ing data.

» shape: Returns a tuple representing the dimensionality
of the DataFrame.

4. Matplotlib

4.1 An Introduction to Matplotlib
Matplotlib is a library in Python that offers functions to plot
data. More specifically, we use the matplotlib.pyplot library.
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4.2 Importing matplotlib.pyplot
This is how we import the library into the Python environ-
ment: Figure 13 The plot() function The library offers a

In [1]: dimport matplotlib.pyplot as plt

Figure 13. Importing matlplotlib.pyplot.

plot() function that can be used to plot 2 sets of data against
each other. The syntax for the plot() function is as follows:
plt.plot(x_data,y_data) where x_data and y_data are the sets(may
be numpy arrays, pandas dataframes or lists) for the data along
x and y axes respectively. There are further attributes to the
plot() function, a few of which include:

* Labels of the axes

* Color of the plot

* Type of line used (solid, dashed, etc...)
» Title of the plot

* Legends

. However, note that plot() is used to plot a continuous graph.
To plot discrete points, matplotlib.pyplot offers the scatter()
function which is very similar to the plot() function in the
way that it takes parameters as well as attributes. The plot()
function also offers many types of plots such as Mollweide
projections, a very common projection used in astronomy
as well as cartography.An implementation of the Mollweide
projection is attached in Figure 14.

90_df #FFD700" , label='LIXB not observed by

rad(gl df['ra']),np.deg2rad(gl _df['de: #00BFFF" , label='LIXB ol

rad(g2_df['ra'1),np.deg2rad(g2_df['de: ,c="#7CFC00" , label="HIIXB not observed

rad(g3_df['ra'1),np.deg2rad(g3_df['de: ,c="#FFOOFF ", label="HIIXB observed by Astros)

pfinal.get xticklabels()+axl.get_yticklal
t_bb )

Figure 14. A Mollweide porjection classifying LMXB (low
mass X-ray binaries) and HMXB (high mass X-ray binaries)
based on whether or not they were detected by AstroSAT

4.3 Subplots
The subplot() utility of matplotplib allows us to create multiple
subplots in a single figure. An example of subplots showing
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Figure 15. HMXB and LMXB sources.

LMXB and HMXB is attached in Figure 15. Note the distinct
arc in the subplot for HMXB sources, this is the Milky Galaxy
observed in the Mollweide Projection.

4.4 Applications of matplotlib in astronomy
We can use these techniques to plot constellations as well as
plot and analyze data gathered by several sources.

Attached in Figure 16 is a plot of strain data versus time
for a black-hole binary. Figure 17 shows the constellation

Strain Data vs Time
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Figure 16. Plot of Strain data vs Time.

Orion plotted in a stereographic projection using matplotlib.

The size of each star is determined using its measured intensity
(stellar magnitude).

Figure 17. Orion
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Astropy is a collection of software packages written in the Python programming language and designed for use in
astronomy. SciPy is a free and open-source Python library used for scientific computing and technical computing.
SciPy contains modules for optimization, linear algebra, integration, FFT, signal and image processing, ODE etc.
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1. Astropy coordinates

In general when we want to describe a location in 3D-space,we
use coordinates of any system(Polar,Cylindrical,etc) to define
it. When we want to tell our location on earth, we generally use
”Geographic Coordinate System(GCS)” which includes longi-
tudes and latitudes.The GPS which we use uses the “"World
Geodetic System(WGS)”.

Similarly to describe a location in space, astronomers use
various coordinate systems. And AstroPy reduces the work
by containing various coordinate systems used in astronomy
under package “astopy.coordinates”.

In this project we come across various coordinate systems.
Some of them are:

International Celestial Reference System(ICRS)
World Coordinate System(WCS) and FITS WCS
Fifth Fundamental Catalogue(FKS5)

Galactic Coordinate System

Ecliptic Coordinate System

1.1 Co-Ordinate Systems
Now, let us see about some coordinate systems used in astron-
omy:

1.1.1 ICRS
The International Celestial Reference System (ICRS) is the
current standard celestial reference system adopted by the
International Astronomical Union (IAU). Its origin is at the
barycenter of the Solar System, with axes that are intended to
be “fixed” with respect to space.ICRS coordinates are approx-
imately the same as equatorial coordinates.

In Equitorial Coordinates we describe a location by Right
Ascension(ra) and Declination(dec) which are similar to lon-
gitudes and latitudes.

1.1.2 WCS and FITS WCS:
The World Coordinate System (WCS) is a set of transforma-
tions that map pixel locations in an image to their real-world
units, such as their position on the sky sphere. These transfor-
mations can work both forward (from pixel to sky) and back-
ward (from sky to pixel). World Coordinate System (WCS) is a
set of transformations that map pixel locations in an image to
their real-world units, such as their position on the sky sphere.
These transformations can work both forward (from pixel to
sky) and backward (from sky to pixel).

Flexible Image Transport System (FITS) is a digital file
format useful for storage, transmission and processing of



scientific and other images. It is the defacto standard used by
many sky tessellation softwares.

1.1.3 FK5

The FKS5 is part of the “Catalogue of Fundamental Stars”
which provides a series of six astrometric catalogues of high
precision positional data for a small selection of stars to define
a celestial reference frame. J2000 refers to the instant of 12
PM (midday) on Ist January, 2000. FK5 was published in
1991 and added 3,117 new stars.

1.1.4 GCS

The Galactic coordinate system is a celestial coordinate sys-
tem in spherical coordinates, with its origin at the Sun, the
primary direction aligned with the approximate center of the
Milky Way galaxy, and the fundamental plane parallel to an
approximation of the galactic plane but offset to its north.
GCS has its own Galactic longitude and Galactic latitude.

1.1.5 ECS

The Ecliptic coordinate system commonly used for represent-
ing the positions and orbits of Solar System objects. The
system’s origin can either be the center of the Sun or the cen-
ter of the Earth, its primary direction is towards the vernal
(northbound) equinox, and it follows a right-handed conven-
tion.

The Vernal equinox, two moments in the year when the
Sun is exactly above the Equator and day and night are of
equal length; also, either of the two points in the sky where the
ecliptic (the Sun’s annual pathway) and the celestial equator
intersect.

FITS WCS

1.2 Using Astropy
1.2.1 Basic usage
We import the coordinate systems package by

“astropy.coordinates”

Then we use function ”SkyCoord” to assign the coordinates
to various systems.

Then we can obtain the details of the coordinates in var-
ious units and obtain it in string by “’to-string()” method as
shown in example,
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: import numpy as np
import pandas as pd
from astropy import units as u
from astropy.coordinates import SkyCoord
¢ = skyCoord(ra=88.79293839*u.degree, dec=7.407064*u.degree, frame='icrs
print(c)

<skycoord (ICRS): (ra, dec) in deg
(88.79293899, 7.407064)>
: c.ra.degree

© 88.79293899

: c.ra.hour

¢ 5.9195292660000005

: c.ra.hms

 hms_tuple(h=5.@, m=55.0, $=10.305357600001628)

In [12]: c.ra.radian

Oout[12]: 1.5497291378979483

In [11]: print(c.to_string('dms'))

88d47m34.5804s 7d24m25.4384s
In [13]: print(c.to_string('decimal’))

88.7929 7.40706

1.2.2 Transformations
We can also transform the coordinates from one coordinate
system to another as shown in example, So in the last part of

In [14]: c_icrs = SkyCoord(ra=10.68458*u.degree, dec=41.26917*u.degree, frame='icrs')
c_icrs.galactic
out[14]: «skycoord (Galactic): (1, b) in deg
(121.17424181, -21.57288557)>
In [15]: c_fk5 = c_icrs.transform_to('fk5') # c¢_icrs.fk5 does the same thing
c_fks
out[15]: <SkyCoord (FK5: equinox=12000.008): (ra, dec) in deg
(10.68459154, 41,26917146)>
In [17]: from astropy.coordinates import FK5
c_fks.transform_to(FK5(equinox="31975"))
Out[17]: <SkyCoord (FK5: equinox=J1975.88@): (ra, dec) in deg

(10.34209135, 41.13232112)>

last example, we can see that we have imported "J1975”. It
corresponds to the reference equinox at epoch J1975. Epoch
refers to a particular point of time.

2. Scipy - Roots

SciPy is a free and open-source Python library used for sci-
entific computing and technical computing. SciPy contains
modules for optimization, linear algebra, integration, interpo-
lation, special functions, FFT, signal and image processing,
ODE solvers and other tasks common in science and engi-
neering. In our project, we use SciPy to do various tasks like

Solving Equations(Roots)
Curve Fitting

Solving Ordinary Differential Equations



2.1 Solving equations using SciPy

We use the ”scipy.optimise” package with a function root”
to solve the equations. The following piece of code is from
’scipy.optimise import root”

from scipy.optimise import root

import numpy as np

For instance, to obtain the roots of linear equation,
4x—5y+8=0,3x+2y—17=0
We solve it as follows

from scipy.optimise import root
import numpy as np
def F(x):
return [4*x[e]-5*x[1]+8, 3*x[e]+2*x[1]-17]
val-root(f,[@,0])
print(val.x)

Another function including trigonometric identities,
x—3sin(x) =0

from scipy.optimise import root
import numpy as np
def f(x):

return x-3*np.sin(x)

val=root(f,[-2,0,3])
print(val.xﬂ

3. Ordinary differential equations

SciPy stands for scientific python. It is a scientific computa-
tion library that provides more utility functions for optimiza-
tion, statistics and signal processing.

3.1 Differential equation solver

Differential equations are solved in Python with the Scipy.integrate

package using function solve_ivp. We use python function as
follows: from scipy.integrate import solve_ivp

3.2 Solving linear differential equations

An example of using scipy.integrate is with the following
differential Use solveivp to approximate the solution to this
initial value problem over the interval [0,7]. Plot the approxi-
mate solution versus the exact solution and the relative error
over time.

as(t)
— = cos(t)
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import matplotlib.pyplot as plt
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3.3 Higher order differential equations
Suppose we have a second-order ODE such as a damped sim-

ple harmonic motion equation, y”+2y/+2y=cos(2x) y(0)=0,y (0)=0

We can turn this into two first-order equations by defining a
new dependent variable. For example, zyz+2z+2y=cos(2x)

z(0)=y(0)=0 We can solve this system of ODEs using as fol-

# H
return [U[1],

Damped harmonic oscillator

0.2

0.1

0.1

-0.2




4. Units and constants

AstroPy is a collection of packages written in the Python and
designed for use in astronomy. AstroPy contains numerous
constants, units, coordinate systems and other functions that
are helpful for computing Astronomical Data.

4.1 Constants

* AstroPy contains various constants which are helpful
in astronomy in “astropy.constants” package. It also
contains the additional meta-data describing their his-
tory of origin, references and uncertainties. We access
constants by using “from astropy import constants as
const” line.

For instance let us find about ”Speed of Light(c)” con-
stant:

In [1]: Hrom astropy import constants as const
print(const.c)

Name = Speed of light in vacuum
Value = 299792458.0

Uncertainty = ©.0

Unit =m/ s

Reference = CODATA 2018

¢ We can also use the constants in different units as shown

In [2]: from astropy import constants as const
print(const.c.to( km/s"))
print(const.c.cgs)

299792.458 km / s
29979245800.0 cm / s

* We can also different versions of constants which may

vary in their “Precision in Value”,”Uncertainity” etc.Physical

CODATA constants are in modules with names like co-
data2010, codata2014, or codata2018. Astronomical
constants defined by the International Astronomical
Union (IAU) are collected in modules with names like
1au2012 or iau2015.Here are some examples
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In [3]: from astropy.constants import codata2e14 as consti4
print(consti4.h)
print(’-"*40)
from astropy.constants import codata2e18 as constls
print(const18.h)

Name = Planck constant
value = 6.62607004e-34
Uncertainty = 8.le-42
unit =1 s

Reference = CODATA 2014
Name = Planck constant
value = 6.62607@015e-34
Uncertainty = @.e

Unit =1 s

Reference = CODATA 2018

In [4]: from astropy.constants import iau2@12 as consti2
print(const12.L_sun)
print(’-"'*60)
from astropy.constants import iau2e15 as constis
print(const15.L_sun)

Name = Solar luminosity
value = 3.846e+26
Uncertainty = 5e+22
Unit =W
Reference = Allen's Astrophysical Quantities 4th Ed.
Name Nominal solar luminosity
Value = 3.828e+26
Uncertainty = .0
Unit =W
Reference = IAU 2015 Resoluticn B 3

4.2 Units

* 1. While trying to obtain some astronomical values,we
may encounter some situations where we require units(like
for conversions,rechecks,etc).So AstroPy contains Units”
package which makes the work easy.

* 2. We access to units by using ”from astropy import
units as u”.We generally assign a unit to a quantity by
multiplying ~u.unit”.Here the unit can be of any type.

* 3. We can also change the value of quantity in different
units and systems.

* 4. A special type of unit in the astropy.units package is
the dimensionless quantity.This can either be initialised
directly or come out from units cancelling out.

¢ 5. It also has access to some constant values like "Mass
of Sun”,’Radius of Earth” etc.

* 6. Astropy can also perform ’implicit’ conversions,like
converting wavelength of light to frequency (in vac-
uum), by specifying the equivalencies parameter.”’spectral()”
is a function that returns an equivalency list to handle
conversions between wavelength, frequency, energy,
and wave number

The following points are shown below with example



In [1@]: import numpy as np
from astropy import units as u
distance2 = 45 * u.m
distancel = 5*%u.m
time = 2 * u.s
speed = (distance2 - distancel)/time
print(speed)
print(speed.to(u.km/u.hour))
print(speed.value)
print(speed.unit)
print((1*u.Joule).cgs)
print((16*u.cm).si)
refractive index = 1.5 *u.dimensionless unscaled
print(refractive_index.value,refractive_index.unit)
distance_ratiol = (1*u.m)/(2%u.m)
print(distance ratiol.value,distance ratiol.unit)
print(distance ratiol.unit == refractive index.unit)
AvgDensity of_sun = 1*u.Msun/(4*np.pi/3*(1*u.Rsun)**3)
print(AvgDensity of_sun.to(u.kg/u.m**3))
print((1eee * u.nm).to(u.Hz, equivalencies=u.spectral()))

20.0m / s

72.8 km / h

20.0

m/ s

10000000.0 erg

8.1m

1.5

a.5

True
1409.7798243075256 kg / m3
299792457999999,94 Hz

5. Cross matching

5.1 Introduction

In Astronomy large data sets and catalogs are present ,map-
ping the different regions of the universe from various obser-
vatories on earth. Some datafields are:

* Right Ascension
¢ Declination
* Magnitude
* Parallax
e Luminosity
¢ Radius
» Temperature
To determine that two observations are pointing to the same

source,we use cross-matching.

5.2 Distance based algorithm

Our project uses the very popular distance based algorithm
where we calculate the on sky distances of two given RA(Right
Ascension) and DEC(Declination) using the Haversine For-
mula and comparing it to a maximum error(around 10-20
arcsecs) The Haversine formula:-

d =2rarcsin(y/hav(@s — @1) + cos(p2) cos(@ )hav(ds — Ar)
where,

* (; is the latitude of point i in rad
* A is the longitude of point i in rad

* hav(0) = sin®(6/2)
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5.3 AstroPy Support
AstroPy easily packages these algorithms into this convenient
function:-

(cl) .match_to_catalog_sky(c2)

Here c1 and c2 are simply coordinate pairs for the different
catalogs we consider.These are the RA and DEC values in
degrees and stored as arrays. The output of the function is a
tuple packed out into three values.

1. idx : integer array : The index of the nearest source in
catalog 2 for each source in catalog 1.

2. d2d : angle : The on-sky(angular)(arcsec) for each
element in the two catalogs

3. d3d : Quantity : The 3D separation between each ele-
ment

5.3.1 Conclusion

Application of the above methods to various datasets ,gives
us the indices which satisfy the given error margin. We then
safely declare that the objects at those two indices are actually
the same. If we recognise an object that does not give a
true cross-match with any source present in the vast catalogs
compiled,one can safely state that the object must indeed be a
new discovery.

6. Curve Fitting

6.1 What is Curve Fitting

Curve fitting, as the term suggests, finding a mathematical
function that best describes a set of data points, usually ob-
served. As observation is prone to some errors, curve fitting is
usually not so easy, because of noise in the data points. Practi-
cally, Curve-fitting is just an optimisation problem, of finding
the best representative to a collection of observations. For

1.0 A

0.5 1

0.0

—0.5 1

-1.01

—1&0 —%5 —50 —iS Ob 23 Sb iS 1&0
Figure 1. Possible set of Observations

further discussion, let’s be limited to two dimensions, which
is easier to visualise. The x-axis is the independent variable or



the input to the function. The y-axis is the dependent variable
or the output of the function. We don’t know the form of
the function that maps examples of inputs to outputs, but we
suspect that we can approximate the function with a standard
function form.

Curve fitting involves first defining the functional form of
the mapping function (also called the basis function), then
searching for the parameters to the function that result in the
minimum error.

Error is calculated by using the observations from the domain
and passing the inputs to our candidate mapping function and
calculating the output, then comparing the calculated output
to the observed output.

6.2 Curve Fitting Algorithms

Scipy itself uses non-linear squares method, but let’s start
from a bit basic.

The key to curve fitting is to form a mapping function at start.
Let’s consider a linear mapping function.

y=mx+c

The coefficients are parameters that are to be adjusted to find
the best fit, using an optimisation algorithm, which is called
linear regression. So far, linear equations of this type can be
fit by minimizing least squares that is, finding a cost function
like:
Z’l1 (y _yoriginal)2

n

J =
and reducing this cost function through gradient descent like:
6=VJ

Z?:] Xi (yi - yoriginal,i)
n

Op =Jm=

zr'l:l (Yi - }’original,i)
n

6, =Jc=

and can be calculated analytically. This means we can find the
optimal values of the parameters using a little linear algebra.

Myey =M — O - Oy

Cnew =€ — - &

Where « is the length of jump along the gradient vector, and
that matters.

The equation does not have to be a straight line.
We can add curves in the mapping function by adding expo-
nents. For example, we can add a squared version of the input
weighted by another parameter:

y= a1x2 +a)x+a3

Similar reasoning as above would work in such cases, even
after introducing non-linear terms.
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6.3 Scipy’s implementation of Curve Fitting

Now moving on to how Scipy implements Curve fitting through
its ‘curve_fit()‘ function, The function takes the same input
and output data as arguments, as well as the name of the map-
ping function to use (using linear model in following code
example):

from scipy.optimize import curve_fit

import matplotlib.pyplot as plt
def f(x, m, c):

return msxx+c
xdata = np.linspace (0, 5, 500)

ydata = f(xdata, 2, 1) +
0.25+«np.random.randn (len(xdata))
p-opt, p-cov = curve_fit(f, xdata,
print(p_opt)

ydata)

ions.PathCollection at @x7fb7ded3

<matplotlib.collec

Figure 2. This is the plot with ’created’ observations.

Output is [2.01640064 0.95691782]

Clearly, this is quite close to the original value of [2,1]. ‘p_cov*
is the covariance matrix generated along with optimum pa-
rameters.

This idea can, as explained earlier, be easily extended to
non-linear curves as well, where our base function is set as
powers of x or transcendental function of x, and curve_fit()
would find optimum parameters to fit given observation set to
such a function.

Another application example we did was for polynomial
curve fitting:


https://machinelearningmastery.com/gradient-descent-for-machine-learning/
https://www.mygreatlearning.com/blog/understanding-learning-rate-in-machine-learning/
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xdata=np.linspace(-3,2, )
ydata=f(xdata,1,2,-3,-2) np.random.randn(len(xdata))

p_opt, p_cov = cf(f,xdata,ydata)
(p_opt)

.scatter(xdata,ydata,s Lat "Dataset’)
.plot(xdata,f(xdata,*p _opt), 'r 'Best Fit")
.xlabel ("X Axis™)

.ylabel("Y Axis™)

.title('Best Fit Curve')

-legend()

Python

Best Fit Curve

—— Best Fit
Dataset

+ Markdown
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Week 3: Fourier Transform and Cepheid Variables

Abstract

In mathematics, a Fourier transform is a mathematical transform that decomposes functions depending on
space or time into functions depending on spatial or temporal frequency. It is one of the seemingly ubiquitous
fields of maths, physics domains. A drawback of the Fourier transformation techniques is that it can only
be used for evenly spaced data. In Astronomy, several times it happens that the period is long enough that
uniform observations cannot be made even within the period time. In such a case we have to resort to
Periodograms method which are estimations of the power spectrum of Fourier transforms. In this article we
discuss Lomb-Scargle periodogram. Cepheid variable is a type of star that pulsates radially, varying in both
diameter and temperature and producing changes in brightness with a well-defined stable period and amplitude.
They act as cosmic benchmarks because of a strong direct relationship between their luminosity and pulsation

period, which helps astronomers measure distances.

Contents
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Lomb-Scargle Periodogram
Cepheid Variables

A WO N =
AW W =

References

1. Fourier Transform

In mathematics, a Fourier transform (FT) is a mathemati-
cal transform that decomposes functions depending on space
or time into functions depending on spatial or temporal fre-
quency. To decipher the crux of Fourier transformation and
its immense contribution in the field of astronomy and as-
trophysics, let us bring in an example of a pallet of paints
of various colours mixed, making such a mess is relatively
easy compared to the stigma of separating this, and what if
we replace the problem of this physical entity with sounds,
frequencies and many more phenomena. The FT primarily
deals with the decomposition of frequencies from an added up
non -sinusoidal wave and is one of the seemingly ubiquitous
fields of maths, physics domains. Of course, there can be a
combination of pure sinusoidal waves. Still, all these account
for simple addition, and the resultant function is no more si-
nusoidal. Dealing with such a function and decomposing the
elements is sure to be a herculean task until we have the FT!

There is an explicit and intriguing phenomenon happen-
ing in the so-called winding machine mechanism of the FT
(not exactly FT, but metaphorically, they perform the same
function)

The task is to create a so-called winding machine that
could differentiate out the original pure sinusoidal frequencies
that added up to one messy non-sinusoidal function. The
working of FT is similar to the lines followed. We now have

Almost-Fouricr
transform

Almost-Fourier
transform
_— >
l Sum
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1
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1

Figure 1. Frequencies and their respective FT

a graph of the non-sinusoidal function. We are now trying to
plot it in a 2D plane, explicitly stated in a circle, which would
be like assuming to remove the function from the function
vs time graph and marking the same graph in a circle (2D)
arena where this would seemingly be felt like a polar kind
of representation of the function, it would be fascinating to
observe that at some stage the polar graph made out of the
standard non-sinusoidal function enwraps itself to a particular
configuration towards to positive x-axis (in case the function
is positive) especially when the frequency of the first graph
matches with the second.

To explain it further, one can imagine the wound up cir-
cular or polar form of the graph to have a centre of mass,
and as soon as the function changes with the change in time,
the centre of mass wobbles around a bit, and for most of the
winding frequencies(particular frequencies where the second
graph takes a concrete shape) the peaks and valleys (compared
in the original frequency vs time function ) are all spaced out
around the circle in such a way that the centre of mass stays
pretty close to the origin. When the winding frequency is



Time Domain
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Frequency Domain
S(w)

Figure 2. Source:https://aavos.eu/glossary/fourier-transform/

the same as the frequency of the given signal, all the peaks
align to the right and valleys to the left. This (centre of mass),
when plotted, provides an exact curve where there is a clear-
cut spike whenever the winding frequency matches with the
frequency of the given signal. These places indeed deliver the
values of the frequencies that made up the original signal, so
this is one hell of an example where we ensured a winding
machine-like mechanism that could hopefully decipher or de-
compose the frequencies that make up a given frequency. But
is this necessarily or exactly the FT? not complete until we
get in-depth to the mathematical aspects of the problem we
have encountered.

1 & it
N L &) e (1)
k=1

This mathematical expression does precisely what we
wanted. It pulls out original frequencies from the jumbled-up
sums (unmixing the pallet of paint). The best part is that there
is another reverse procedure of what we have done, the inverse
Fourier transformation, that could possibly approximate the
reverse of the procedures we have followed till now. The
Fourier transformation can be essentially helpful if you have
a sound recording and want to pull out an unwanted pitch
from the recording. All we have to do is plot the graph. At
characteristic sites, we can observe a spike in the peak of
the final COM graph that specifies the individual frequencies.
Then, we can track the frequency related to the shrill pitch and

effectively dump it from the recordings. Finally, we follow
the inverse Fourier transformation to put back the pieces of
the puzzle.

Consider the equation

o) = [ se i @

The Euler’s number is coming in handy in here. The 27
denotes the second graph that would possibly be along a circle,
the frequency f is to indicate how many times the vector form
the centre to the function drawn in the near-circular region
(synchronised with the actual x-y plot of the given signal)
turn in each time-period. Thus, the rotating vector in the area
fluctuates up and down in the original signal plotted in the
x-y graph and fluctuates in a pattern of a flower blooming and
then shrinking in the latter graph.

1 & .
Y s(t) e 3)
k=1

Z|

This small expression is a super elegant way to encapsu-
late the whole idea of winding a graph around a circle with
a variable frequency fff. Now it’s time to understand the
COM tracking associated with deciphering the frequencies
that made up the messy non-sinusoidal function. Approximate
it, at least. First, we need to pick up a bunch of points from
the original signal, see where the points end up on the wound
up graph and taking the average.



Figure 3. FT in Integral form with all possible finite time
intervals
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Add them together as complex numbers and divide them
by the number of points you have sampled. The more points
you take, the closer the graph gets and the easier it gets to
solve the riddle. It can be expressed as an integral over a
complex function that sure is easy to behold, but solving it
is a legit nightmare. This is not necessary, but here comes
the actual honest to goodness Fourier transformation. This is
the same expression except for the fact that we do not divide
the integral by the time interval. This implies that the given
function or the distance of the COM from the origin in the
winding curve is gradually a multiple of the time taken as
now the division is omitted. Hence, FT of intensity versus
time function is a new function that does not have time as an
input but takes up frequency (winding frequency). In terms
of notation, the standard convention to call this function is g;
now, this function’s output is a complex number. In a 2D plane,
some point corresponds to the strength of a given frequency
in the original signal. The plot that has been graphed for the
FT is just the fundamental component of the output, the x
coordinate separately, daunted in the expression.

Often the limits are taken from —oco — co. There is a
conventional FT by the name discrete FT or famously the
”Schuster” periodogram. But we are more likely to give a
heads up for the Lomb Scale periodogram.

2. Lomb-Scargle Periodogram

A drawback of the Fourier transformation techniques is that
it can only be used for evenly spaced data. In Astronomy,
several times it happens that the period is long enough that
uniform observations cannot be made even within the period
time. In such a case we have to resort to other methods.
One such method is the use of Periodograms which are esti-
mations of the power spectrum of Fourier transforms. The
periodogram that we will discuss is the Lomb-Scargle peri-
odogram. The Lomb—Scargle periodogram is a well-known
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algorithm for detecting and characterizing periodicity in un-
evenly sampled time-series and has seen particularly wide
use within the astronomy community. As an example of a
typical application of this method, consider the data shown in
Figure 1: this is an irregularly sampled time-series showing a
Cepheid variable (OGLE-LMC-CEP-0005), with unfiltered
intensity magnitude. (We will discuss more about what are
Cepheid variables in the next Section.) By eye, it is clear

Observed Light Curve

5500 6000 6500 7000 7500
Time (days)

Figure 4. Uneven Data

that the brightness of the object varies in time with a range
spanning approximately 0.171 mag, but what is not imme-
diately clear is that this variation is periodic in time. The
Lomb-Scargle periodogram is a method that allows efficient
computation of a Fourier-like power spectrum estimator from
such unevenly sampled data, resulting in an intuitive means
of determining the period of oscillation. The Lomb-Scargle
periodogram computed from these data is shown in figure 5.
The Lomb—Scargle periodogram here yields an estimate of

Power Spectrum

Jl Ll Jl{JJLLLl s “ -

o 2 4 6 8 10
Frequency (1\day)

Figure 5. Lomb-Scargle Periodogram

the Fourier power as a function of period of oscillation, from
which we can read off the period of oscillation of approximate
5.611 days. Figure 6 shows a folded visualization of the same
data as Figure 4 i.e., plotted as a function of phase rather
than time. Here we employ the method called phase-folding.
Basically, we take a starting point and from there we assign
each time stamp a phase value according to the time period.
Like if we start from t=0 and the time period is T=2, then t=1
would be assigned the phase 0.5. Phase folding brings out the
structure or shape of the periodic variation.

3. Cepheid Variables

A Cepheid variable is a type of star that pulsates radially, vary-
ing in both diameter and temperature and producing changes
in brightness with a well-defined stable period and amplitude.
Stating simply; they brighten and dim periodically. Cepheid
variables act as cosmic benchmarks because of a strong direct
relationship between their luminosity and pulsation period,
which helps measuring distances a lot easier for astronomers.
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Figure 6. Phase folded Graph

Cepheid variables are reasonably abundant and very bright.

Astronomers can identify them not only in our Galaxy, but in
other nearby galaxies as well. If one requires the distance to
a given galaxy one first locates the Cepheid variables in this
galaxy. From these observations one determines the period of
each of these stars, which tells us about its luminosity which
then can be easily converted to distance in light years. The
process to do this has already been covered in the previous
section. Below are the phase folded graphs for some more
Cepheid variables.

Phase Folded Curve
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Figure 7. Phase folded Graph for OGLE-LMC-CEP-0780
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Phase Folded Curve
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Figure 8. Phase folded Graph for OGLE-LMC-CEP-4364

4. References

1. Data for Cepheid Variables is obtained from:
http://ogledb.astrouw.edu.pl/ ogle/OCVS/index.php.
https://starchild.gsfc.nasa.gov/docs/StarChild/questions/
cepheids.html

2. Fig 1 and Fig 3 obtained from 3Blue1Brown’s But what
is the Fourier Transform? A visual introduction
https://youtu.be/spUNpyF58BY
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Abstract

the needs of big data in astronomy have grown.

" Material https://github.com/astroclubiitk/computational-astrophysics

For astronomy and other quantitative imaging work, the Flexible Image Transport System (or FITS) format is
almost universal. It includes the image data, and a header describing the data. FITS files may also be tables of
data, or a cube of images in sequence. The standards developed for creating these files are slowing evolving as

Contents
Introduction 1
0.1 Why FITS? . ... . 1
1 Image Stacking 1
2 Bibliography 2

Introduction to FITS

The Flexible Image Transport System (FITS) is the most com-
monly used file format for astronomical data . It was initially
developed by astronomers in the USA and Europe in the late
1970s to serve the interchange of data between observato-
ries and was brought under the auspices of the International
Astronomical Union in 1982. It is an open standard defin-
ing a digital file format useful for storage, transmission and
processing of data: formatted as multi-dimensional arrays or
tables.The FITS standard was designed specifically for as-
tronomical data , and includes provisions such as describing
photometric and spatial calibration information, together with
image origin metadata.

Optional —

/f \\\

Header Block continues
i
Primary N . S D - .
HDU e - em— e
. a
(e.g. HDU[0]) Header Data
k Header Data Unit (HDU)
Extension 1
CornbUny . S —
Extension N I .. S . . .

(e.g. HDU[N])

Figure 1. FITS

0.1 Why FITS?
 Storage of more bits per pixel and also floating point
values.

* Storage of arbitrary number of data channels.
* No lossy compression as is typical for JPEG.

* Provides higher resolution and is capable of storing 3D
data volumes.

* Support for unlimited metadata in the header, for exam-
ple the sky coordinates, information about the telescope,
etc. which is not provided by other file formats.

It is backward compatible.

Softwares like SAO IMAGE DS9 can be used to open
FITS file. Alternatively ,it can be done using python as well
as shown below:

import numpy as np
import matplotlib.pyplot as plt

from astropy.io import fits

from astropy.utils.data import download_file

import scipy

from scipy import stats

img_file = download_file('http://data.astropy.org/tutorials/FITS-images/HorseHead. fits', cache=True )
hdu_list=Fits.open(img_file)

img_data=hdu_list[o].data

plt.colorbar()

plt. show()
22500
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10000
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200 400 600 800

Figure 2. Code for Logarithmic Scaling

0

1. Image Stacking

Image stacking is a technique used to enhance astropho-
tographic images by reducing image noise and distortion
,thereby boosting image details.

An image stack combines a group of images with a similar
frame of reference, but differences of quality or content across
the set.
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C_map=magma

0 22500
100 base_url = "http://data.astropy.org/tutorials/FITS-images/M13_blue {e:e4d}.fits’
20000 image_list=[download_file(base_url.format(n),cache=True) for n in range(1,6)]
il_nage_@ncat:[fits‘getdata(imgge) for image in image_list]
200 ﬁlnal_lmage = np.zeros(shape=image_concat[@].shape)
iin i t:
I?SDU or 1-:ll'\ 1r_r|age_cnr|(a . i
final_image=final_image+i
300 histo=plt.hist(final_image.flatten(),bins="auto’)
15000 #scaling the image according to the histograﬁﬁ
plt.show()
400 plt.title(’Stacked image')
plt.imshow(final image,cmap="viridis’,vmin=2.2e3,vmax=2.9e3)
500 12500 plt.colorbar()
plt.show()
600 10000 Figure 4. Code
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Figure 6. Stacked Image
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This week we learnt about another python library called Astroquery. Astroquery is a set of tools for querying
astronomical web forms and databases. This is extremely useful in obtaining data from official catalogues and
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1. Introduction

Astroquery is an Astropy affiliated package and is tool for
accessing databases containing a star’s or a system of stars’
information. These tools are built on the Python requests
package, which is used to make HTTP requests, and Astropy,
which provides most of the data parsing functionality. For
our purposes, we make use of it’s packages: VizieR, SIM-
BAD and SDSS. VizieR gives us the most complete library of
published astronomical catalogues, tables and associated data,
verified and can be accessed through several interfaces. The
SIMBAD astronomical database provides basic data, cross-
identifications, bibliography and measurements for astronom-
ical objects outside the solar system. While SIMBAD is a
dynamic database and is updated every working day, SIM-
BAD is not a catalogue, and should not be used as a catalogue.
The CDS also provides the VizieR database which contains
published lists of objects, as well as most very large surveys.

The idea now is to use both SIMBAD and VizieR as com-
plementary research tools. Lastly, the SDSS is a project to
make a map of a large part of the universe. The kinds of data
include images, spectra, photometric data, and spectroscopic
data.

2. Sloan Digital Sky Survey

Starting with how to use astroquery to query the SDSS, we
will explain the following:

* What is SDSS?

* Querying objects and region

* Downloading Images using SDSS
* Downloading Spectra using SDSS

* Spectral templates

2.1 Introduction

The Sloan Digital Sky Survey or SDSS is a major multi-
spectral imaging and spectroscopic redshift survey using a
dedicated 2.5-m wide-angle optical telescope at Apache Point
Observatory in New Mexico, United States. The project was
named after the Alfred P. Sloan Foundation, which contributed
significant funding.

SDSS uses a dedicated 2.5 m wide-angle optical telescope;
from 1998 to 2009 it observed in both imaging and spectro-
scopic modes. The imaging camera was retired in late 2009,
since then the telescope has observed entirely in spectroscopic
mode. Images were taken using a photometric system of five
filters (named u, g, r, i and z). These images are processed
to produce lists of objects observed and various parameters,
such as whether they seem pointlike or extended (as a galaxy
might) and how the brightness on the CCDs relates to various
kinds of astronomical magnitude.

For imaging observations, the SDSS telescope used the
drift scanning technique, but with choreographed variation of
right ascension, declination, tracking rate, and image rotation



which allows the telescope to track along great circles and
continuously record small strips of the sky The telescope’s
imaging camera is made up of 30 CCD chips, each with a
resolution of 2048x2048 pixels, totaling approximately 120
megapixels. Using these photometric data, stars, galaxies, and
quasars are also selected for spectroscopy. Every night the
telescope produces about 200 GB of data.
In Python, The API can be imported with:
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returned by query_region).

get_spectral template () isusedto download spec-
tral templates from SDSS DR-2.

Location: http://www.sdss.org/dr7/algorithms/spectemplates/

There 32 spectral templates available from DR-2, from
stellar spectra, to galaxies, to quasars. To see the available
templates, do: do:

from astroquery.sdss import SDSS

2.2 Interacting with SDSS through Astroquery
2.2.1 Querying objects and region
We can use this site to navigate objects within the SDSS
footprint using their coordinates or name

query_crossid () canbe used to query the service,using
the cross-identification web interface,and returns a table ob-
ject.We use cross-Id when we have IDs and positions (RA/Dec)
and we need SDSS-III cross-matches for each of our objects

query.-region () is used to query a region around
given coordinates and returns a table object. It is equivalent
to the object cross-ID from the web interface

Example:

pos =
coord.SkyCoord (/" 0h8m05.63s+14d50m23.3s’
frame="icrs’)

xid = SDSS.query_region (pos,
spectro=True)

print (xid)

~

2.2.2 Downloading data

If we want to download spectra and/or images for our match,
we have all the information we need in the elements of “xid”
from the above example.

get_images () is used to download an image from SDSS.
Querying SDSS for images will return the entire plate. For
subsequent analyses of individual objects. We can download
and plot the image in the following way:

im = SDSS.get_images (matches=xid,
band="r")

hdulist = im[O0]

data = hdulist[0].data

plt.imshow (data)

get_spectra () is used to download spectrum from
SDSS.

sp = SDSS.get_spectra (matches=xid)

The variables “sp” and “im” are lists of HDUList objects,
one entry for each corresponding object in xid.

Note that in SDSS, image downloads retrieve the entire
plate, so further processing will be required to excise an im-
age centered around the point of interest (i.e., the object(s)

from astroquery.sdss import SDSS print
SDSS.AVAILABLE_TEMPLATES

3. SIMBAD

3.1 Introduction to SIMBAD

The purpose of SIMBAD is to provide information on as-
tronomical objects of interest which have been studied in
scientific articles. This states:

The SIMBAD database is managed by the Centre
de Données astronomiques de Strasbourg (CDS).
The SIMBAD data base presently (June 2020)
contains information for:

¢ About 5,800,000 stars;

* About 5,500,000 non-stellar objects (galax-
ies, planetary nebulae, clusters, novae and
supernovae

SIMBAD was constructed to facilitate cross-referencing be-
tween different star catalogs and we can do so directly by
clicking here, or may access it through the package Astropy.

3.2 How to query SIMBAD
In Python, The API can be imported with:

>>> from astroquery.simbad import Simbad

Then, for instance, say one wants to extract information
about the Messier object 'M2’, then,

>>> result_table =
Simbad.query_object ("m2")
>>> print (result_table)

Multiple queries can also be done like this:

>>> from astroquery import simbad
>>> targets =
[m31, m51 , omcl , notatarget ]
>>> queries = [simbad.QueryId(x) for x
in targets]
>>> result =
simbad.QueryMulti (queries) .
execute (mirror=harvard)
>>> print result.table




3.3 How to query different types of data
3.3.1 Wildcard entries
So for instance to query messier objects from 1 through 9:
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100 seconds. You may want to modify this - again you can
do this at run-time if you want to adjust it only for the current
session.

>>> from astroquery.simbad import Simbad

>>> result_table =
Simbad.query_object ("m
wildcard=True)

>>> print (result_table)

[(1-91",

3.3.2 Querying regions

Queries that support a cone search with a specified radius -
around an identifier or given coordinates are also supported.
If an identifier is used then it will be resolved to coordinates
using online name resolving services available in astropy.

>>> from astroquery.simbad import Simbad

>>> result_table =
Simbad.query_region ("m81")

>>> print (result_table)

When no radius is specified, the radius defaults to 20 arcmin.
A radius may also be explicitly specified - it can be entered
either as a string that is acceptable by
astropy.coordinates.Angle or by using the Quan-
tity object from astropy.units:

>>>

>>> import astropy.units as u

>>> result_table =
Simbad.query_region ("m81",
* u.deq)

>>> # another way to specify the radius.

>>> result_table =
Simbad.query_region ("m81",
radius="0d6m0s”’)

>>> print (result_table)

from astroquery.simbad import Simbad

radius=0.1

3.4 Changing default settings

For the our purposes, this will suffice. However, we may
customise the default settings in order to limit the data that is
provided to us.

3.4.1 Changing the row limit

To fetch all the rows in the result, the row limit must be set
to 0. However for some queries, results are likely to be very
large, in such cases it may be best to limit the rows to a smaller
number.

>>> from astroquery.simbad import Simbad
>>> Simbad.ROW_LIMIT = 15 #now any query
fetches at most 15 rows

3.4.2 Changing the timeout
The timeout is the time limit in seconds for establishing con-
nection with the SIMBAD server and by default it is set to

>>> from astroquery.simbad import Simbad
>>> Simbad.TIMEOUT = 60 #sets the
timeout to 60s

4. Vizier

4.1 Introduction to VizieR

VizieR is a Catalogue service, an APL. The site itself was built
by the University of Strasbourg. Official Documentation here
states:

VizieR provides the most complete library of pub-
lished astronomical catalogues with verified and
enriched data, accessible via multiple interfaces.

Query tools allow the user to select relevant data tables and
to extract and format records matching given criteria. One
can use the service either directly from here, or access them
through the package Astropy, which was done in this project.
In Python, The API can be imported with:

from astroquery.vizier import Vizier

4.2 Interacting with VizieR through Astroquery
4.2.1 Finding Catalogues

Currently, 21171 catalogues are available that can be accessed
by VizieR.

To find them with keywords, find_catalogs () can be
used.

Here, We need to find Henry Draper’s catalogue.

catalogue_example =
Vizier.find_catalogs (’draper’)
for K, V in catalogue_example.items() :

print (K, ’:\t’, V.description, ’'\n’)

This prints out all catalogues with the keyword draper in their
keys. One can easily pick out the catalogue in need from the
description. The output of interest was:
ITI/135A : HENRY DRAPER CATALOGUE AND EXTENSION
(CANNON+ 1918-1924; ADC 1989)

4.2.2 Viewing Catalogues
Once you know the key/value of the catalogue of interest,
get_catalogs () provides a convenient way to access that.

henryDraper =
Vizier.get_catalogs (' III/135A")
value instead of the key

print (henryDraper)

henryDraper._dict

# or




This prints out the number of tables in the catalogue (one in
henryDraper) with rows, columns specified. _.dict prints out
the preview of the table in context.

4.2.3 Querying Objects
Any celestial object can be handled with VizieR, given that
it’s documented in the catalogues.

ml3 = Vizier.query_object ('ml3")
print (ml3)

This returns a list of relevant tables to the object. Once you
find the relevant table’s key, accessing is just like OrderedDict
in Python.

4.2.4 Querying Regions

To query a region either the coordinates or the object name
around which to query should be specified along with cata-
logue to refer to and the value for the radius (or height/width
for a box) of the region, where the radius is provided in angles.
If only one angle is provided, then region is treated as a square,
else height and width are needed.

query_region method is used for this.

ml3 = Vizier.query_region('ml3’,
radius="0dé6m0s", catalog="GSC")

# or
from astropy.coordinates import Angle
ml3 = Vizier.query_region('ml3’,

radius=Angle (0.1,
catalog="GSsSC")

# or

import astropy.units

ml3 = Vizier.query_region('ml3’,
radius=0.l*astropy.units.deg,
catalog="GSC")

# or

ml3 =
Vizier.query_region(ra="16h41m42s",
dec="36d27m41s", radius="0domOs",
catalog="GSsSC")

lvdeg") ,

4.2.5 Constraining Results

To do so, an instance of VizierClass class, with the conditions,
must be initiated first. All further queries may then be per-
formed on this instance rather than on the Vizier class.

vizClass = Vizier (columns=['B-V’,

"Vmag’, 'Plx’, ’_DEJ2000'7],
columns_filters={"Vmag":">10"},
keywords=["optical"])

Now we can call different query methods on this Vizier in-
stance.

result = Vizier.query_object ("HD
226868", radius="20s",
catalog=["NOMAD", "UCAC"])
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print (result[0]) # no query

v = Vizier (columns=["x", "+_r"],
catalog="I1/246")

result = v.query_region("HD 226868",
radius="20s")

print (result[0])
of distance column "_r"

# Sorted data on basis

4.2.6 Querying Tables

A Table can be used to specify coordinates in a region query
only if it contains _RAJ2000 and _DEJ2000 where J2000 is
the currently used standard epoch, the Gregorian date January
1, 2000 at 12:00.

Example of querying a table is as follows, context is analysing
AGNs in Veron and Cety catalogs with 10.0 < VMAG < 11.0.

agn = Vizier (catalog="VII/258/vv10",

columns=["*", ’_RAJ2000’,’_DEJ2000"17)
.query_constraints (Vmag="10.0..11.0") [0]
print (agn)
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After months of learning various astronomical and computational techniques we decided to put them on a test by
doing a case study on a actual astronomical object. We will also learn about HR diagrams
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1. Introduction

The Primary objective of our project under Astronomy Cub
IITK was to examine a catalog ,extract data from it and present
our findings and results with appropriate plots and conclu-
sions. We learned lot of essential skills to navigate through
an astronomical catalog as well as methods to break down
and conclude data comprising of thousands of sources. To
test our skills we decided to do a case study on one of the
many astronomical objects. for this we have considered the
”Seven Sisters” or the Pleiades Cluster form the coveted Gaia
Archives.

1.1 Pleiades Cluster

The Pleiades Cluster,also called the Seven Sisters or M45 is
an open cluster of stars,nearest to the earth and most easily
observable from the night sky. It belongs to the constellation
Taurus and is composed of many B-class stars. The majority
of the stars are blue and hot and have been predicted to have
formed around 100 million years ago. There as many as 987
stars in the cluster.

1.2 Project Details

Our project involved extracting the Pleiades cluster data from
the Gaia Archive, compiling and sorting it to present accurate
results of the stellar Distance, Visual Magnitude, Luminosity

-

Figure 1. M45: Pleiades Cluster

and the Radius of the stars present in the cluster.
Further,we also attempted to predict the age of the cluster
using the Hertzsprung-Russell Diagram.

2. Process

2.1 Data Collection

Our first step was to collect data about Pleiades star clus-
ter from official catalogues, for our purposes we decided to
choose the Gaia Archive as our data source. To extract data
from the archive we took the help of the Astroquery and As-
tropy libraries in python. With this we created a CSV file
containing data like G-band mean magnitude, Right ascen-
sion, Declination, Parallax, BP - RP colour, stellar luminosity,
stellar effective temperature and stellar radius.

2.2 Absolute Magnitude and Distance

The next task was to calculate the absolute magnitude (M)
and the stellar distance (d) of the cluster. So, we used the
following formula:

m—M =5log(d)—5 ()



gmag ra dec plx bp_rp  lum_val teff_val

8 15.684173 58.452896 23.485773 3.480038 2.192428 ©.862333 3797.2200

1 7.498167 55.9300096 25.880582 B8.827662 ©.188913 NaM 8337.33220

2 16.182813 57.17@842 23.237979 B8.589836 3.116683 NalM 3838.1667

3 12.923352 56.999885 24.731893 6.493208 1.591153 B.156267 4456.1650

4 16.454218 55.865750 24.2706@4 2.675075 2.346280 06.850944 3836.el00
radius_wal
8 @.576938
1 NalN
2 NalN
3 8.663230
4 @.512623

Figure 2. First five entries in the created database

Where, d = 1000/parallax

m = G-band mean magnitude

With this we found the absolute magnitude of every star in the
cluster and the distance of the cluster which came out to be
444705021 light years, which when cross checked with the
actual values comes out to be very accurate.

Density Plot (Without Outliers)

04

003

Density

——— S
B0 400 450 500 550

Distance (light year

Figure 3. Density Plot with Distance

2.3 Luminosity and Temperature

Next we calculated the Luminosity and temperature of stars
in the cluster and cross-checked them with their values in the
database. Formulae used:

L
M=4.77-2.5log(—) 2)
Lo
5601
Ly =—— 3)
(color+9.4)3

We did a similar calculation for radius of the stars using the
formula,

L
R Vi
%~ Iy @)
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Next we plotted these values with their actual values from the
database and observed the graph. On calculating the slope of

Comparision of Actual and Calculated Values
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Figure 4. Comparison of calculated values with actual values

the above graphs we observed that each slope was near about
equal to one which meant that our values were pretty accurate.

2.4 Position in the Night Sky

Then the next task is to plot the position of stars using right
ascension and declination coordinates and we defined the size
of the stars to be equal to their brightness to get a good idea
of how the cluster actually looks. Brightness of a star is the
difference of the maximum G-band magnitude and the G-band
magnitude of that particular star.



Position in the Night Sky

Figure 5. Position in the Night Sky

2.5 Hertzsprung-Russell Diagram
The Hertzsprung—Russell diagram, abbreviated as HR dia-
gram , is a scatter plot of stars showing the relationship be-
tween the stars’ absolute magnitudes or luminosities versus
their stellar classifications or effective temperatures. The
diagram was created independently around 1910 by Ejnar
Hertzsprung and Henry Norris Russell, and represented a
major step towards an understanding of stellar evolution.
Depending on its initial mass, every star goes through
specific evolutionary stages dictated by its internal structure
and how it produces energy. Each of these stages corresponds
to a change in the temperature and luminosity of the star,
which can be seen to move to different regions on the HR
diagram as it evolves. This reveals the true power of the HR
diagram — astronomers can know a star’s internal structure
and evolutionary stage simply by determining its position in
the diagram.

Hertzsprung-Russell Diagram
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Figure 6. The Hertzsprung-Russell diagram at various stages
of stellar evolution.

Case Study: The Pleiades Star Cluster — 3/4

Most of the stars occupy the region in the diagram along
the line called the main sequence. During the stage of their
lives in which stars are found on the main sequence line,
they are fusing hydrogen in their cores. The H-R diagram
can be used by scientists to roughly measure how far away
a star cluster or galaxy is from Earth. This can be done by
comparing the apparent magnitudes of the stars in the cluster
to the absolute magnitudes of stars with known distances (or
of model stars).

Our task was to plot the HR diagram of the Pleiades cluster
and using that find the approximate age of the cluster.

Hertzsprung-Russell Diagram
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Figure 7. The Hertzsprung-Russell diagram of Pleiades
Cluster

From the diagram we approximated the turnoff point
(point where the HR diagram starts deviating from the main se-
quence). Now the formula for calculating the age of a cluster
is:

LoM
Lage = 10 m (5)
Where, ) = 15 x 10° years
and, L o< M3
Putting in the values from the graph and database we get the
age to be approximately 84 million years.

3. Conclusions

In this Finale project we applied all the concepts we have
learnt so far in this span of 5 Weeks. We learnt different types
of python libraries related to astrophysics like

* Astropy

* Scipy
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e Astroquery

and and we used some basic libraries of python like :

Matplotlib
e Numpy
* Pandas
* Seaborn

for analysing our data of Pleiades Cluster also known as
Seven sisters. and plotting different kinds of plots like density
plot and Hertzsprung-Russell Diagram We used the Curve
Fitting techniques for plotting our data.

We Compared the values of luminosity,temperature and radius,
that we derived in equations 2,3 and 4, with the actual values
of the stars using the data given.

We plotted a HR diagram and found the turnoff point using
our knowledge. Then we estimated the age of the star cluster
using equation 5.

gmag ra dec plx bprp lum_val teff val radius val abs mag
15684173 58452096 23485778 3486630 2192428 0062333 3797.0000 0576938  7.609925
7498167 55930096 25080502 8027063 0.188913 NaN 8337.3330 11.626516
16.102013 57.170842 23237979 8.509836 3.116683 NaN 3838.1667 2.730650
12923352 56.999005 24731093 6493298 1591153 0.156267 4456.1650 0663230  7.261571
16454210 55.865759 24270604 2675075 2346289 0.050944 3830.0100 0512623  8.164680

11.852763 56.920869 22929795 5779793 1404244 0513834 4526.7550 1.165440 8914174

8.186488 55930264 24374396 7.226433 0352915 7.839014 7963.1953 1470986 11.463561
15502478 56525937 25.112616 2085063 1515169 0.141687 44430000 0.635280 10.362302
17422070 57.441505 22.895388 1730391 2049238 NaN NaN NaN 9374970
11906063 57.765432 22.840395 4.196960 1.102659 0.816104 4947.1800 1.229731 10.460912

Figure 8. Data of Pleiades Cluster




We wind up this project with lots of
takeaways. Apart from getting to know the
basic tools that an astrophysicist must
have, we used like python, git, jupyter and
anaconda to convert raw data to more
understandable forms. We learnt about
exciting celetial objects and mathematical
techniques: Fourier transformation, binary
starts and cepheid variables. We also
processed images and extract essential
information regarding a star's luminosity.
For several of us, this means an initiation
intro the scientific techniques used to
study celestial objects, for others, it meant
using a new programming language and
thinking about how data behaves.
Needless to say, this project enriched both
our understanding of theory and well as
where it is applied.
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