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1. Introduction

Spacecraft control and maneuver as well as accurate
mapping of trajectories of asteroids require precision tracking
of their movement in space. While their orbits can be calculated
relatively easily by only considering the major forces being ap-
plied on the body, over time the minor forces build up resulting
in a completely different orbit.

Hence, in order to accurately predict their movement,
these "perturbations" need to be taken into account as well. Per-
turbations can cause both positive and negative effects.

2. Reasons for Perturbations

Perturbations might be caused due to various phe-
nomenon, both natural as well as man-made. Here, are some of
the major reasons for perturbations:

– Atmospheric Drag
– Neglected gravitational forces
– Non-Spherical shape of the Earth
– Collision with Space Debris

Let start off by constructing a new co-ordinate system in
order to make it easier to calculate various forces acting on a
body.

3. Mathematics

Firstly, we define a new coordinate system as shown in
the figure given below:

Fig-1: Satellite Normal Coordinate System

For the rest of the paper, we’ll refer to it as the Satellite-
Normal coordinate system. Here, we have assumed the orbit of
the satellite to be an ellipse with the earth at one of the focii.

3.1. Setting up the system

The 3 perpendicular vectors are defined as follows:
– êR points along the earth: satellite vector
– êN points in the direction of

−→
h i.e. the angular momentum of

the satellite about the center of the earth

– êT points in the direction of êN XêR

A general force on the satellite in this coordinate system
can then be written as:
−→
F = NêN + RêR + T êT (1)

Where N, R, T are completely arbitrary variables.
But due to perturbations, some of the quantities that we

earlier assumed to be constant are now varying. For example:
(Earth’s coordinate system [x̂, ŷ, ẑ] is assumed to be fixed)

– a = semi-major axis of the ellipse of the satellite
– e = eccentricity of the ellipse of the satellite
– i = Inclination = angle between angular momentum of the

satellite and earth’s normal
– Ω = Right Ascension of the Ascending Node, a.k.a. RAAN
– ω = argument of perigee

Hence, to find them out, we need to find out their deriva-
tives, most of which depend upon

−→
h (angular momentum) and E

(total energy):

a = −
µ

2E
(2)

e =

√
1 +

2Eh2

µ2 (3)

cos i =
hz

h
(4)

tanΩ = −
hx

hy
(5)

where, µ = GME MS , the natural convention. Note
that here we have assumed energy and momentum loss due to
perturbations. Hence, E and

−→
h are assumed to be varying and

consequently, a quasi-static elliptic path of the satellite. Hence,
we are focusing more on the derivatives of the above variables.

Hence, we first need to find out
−̇→
h and Ė. Now, the gen-

eral force,
−→
F , acting on the satellite at the radial position, −→r can

be written as:

−→
F =

NR
T

 , −→r =

r0
0


Energy

Ė =
d
dt
−→
F ·
−→
dr

=
−→
F ·

d
−→
dr
dt

=
−→
F · −→v

=
−→
F · (ṙêR + rθ̇êT )

= ṙR + rθ̇T (6)

Angular Momentum

ḣ = |−→r X
−→
F |

= |rT êN + rNêT |

=

−→
h ·
−̇→
h
|h|

=
(hêN) · (rT êN − rNêT )

|h|
= rT (7)

Now onto calculating θ̇ and ṙ:
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θ̇ =
d
dt

(ω + f ) � ḟ =
h
r2 (8)

By definition,

h = r · v⊥ = r(̇r ḟ ) = r2 ḟ

r =
h2/µ

1 + e cos f
⇒ ṙ =

ḟ er2 sin f
h2/µ

=
µe sin f

h
(9)

3.2. Calculating ȧ

Now, on differentiating a w.r.t time to obtain ȧ, we get,

ȧ =
da
dE

dE
dt
=
µ

2E2 Ė, ...E = −
µ

2a
(10)

⇒ ȧ = 2
a
µ2

(
R
µe sin f

h
+ T

h
r

)

⇒ ȧ = 2

√
a3

µ(1 − e2)
[eR sin f + T (1 + e cos f )] (11)

3.3. Calculating ė

Now, on differentiating e w.r.t time to obtain ė, we get,

ė =
1
2e

(
e2 − 1

) (
2

ḣ
h
−

Ė
E

)
(12)

⇒ ė =

√
a(1 − e2)
µ

[R sin f + T (cos f + cos Eecc)] (13)

where Eecc is the eccentric anomaly, defined as:

tan
(Eecc

2

)
=

√
1 − e
1 + e

tan
(

f
2

)
(14)

And, r was rewritten as:

r = a(1 − e cos Eecc)

3.4. Calculating i̇

Now, on differentiating cos i (Angle of inclination) w.r.t
time to obtain i̇, we get,

cos i =
hz

h

⇒
d
dt

i =
1

sin i
hḣz + ḣhz

h2

=

√
a(1 − e2)
µ

(
N cos(w + f )

1 + e cos f

)
(15)

3.5. Calculating Ω̇

Now, on differentiating tanΩ (RAAN) w.r.t time to ob-
tain Ω̇, we get,

tanΩ = −
hx

hy

⇒
d
dt
Ω =

hxḣy − ḣxhy

h2
y

cos2(Ω)

=

√
a(1 − e2)
µ

(
N sin(w + f )

(1 + e cos f ) sin(i)

)
(16)

3.6. Calculating ω̇

Similarly, ω̇ can also be calculated as shown:

ω̇ = −Ω cos i +

√
a(1 − e2)

e2µ

(
−R cos f + T

(2 + e cos f ) sin f
(a + e cos f )

)
(17)

4. Drag Perturbations

4.1. Calculation

As was derived in the Summer Project, 2021 - Space: The
Final Frontier, we calculated the drag force on rockets, which
incidentally can be applied to satellites to a great extent:

FD = CDQA =
1
2
ρv2CDA (18)

where

– Q = Dynamic pressure
– A = Area of satellite projected onto the êN - êR plane
– CD = Coefficient of drag

We can also define another variable, B, known as the Bal-
listic Coefficient as follows:

B =
m

CDA
(19)

Then, the force on the satellite due to drag can be written
in the form of eq. 1 as:

N = R = 0, T = −
1
2
ρ

m
CDAv2 = −

1
2
ρv
B

(20)

4.2. Estimation of Ballistic Coefficients

For space objects with perigee altitude below 600 km, the
variation in the semi-major axis is mainly caused by drag per-
turbation. Therefore, the ballistic coefficients can be estimated
based on variation of mean semi-major axis derived from the
TLEs (Two Line Element).

The variation in mean semi-major axis primarily comes
from atmospheric drag. The atmospheric drag on an object will
continually decrease the osculating semi-major axis a, according
to:

Page 5 of 13

https://github.com/astroclubiitk/Space-The-Final-Frontier-2021/blob/main/Slides/Space%20Exploration_2_%20Aerodynamics%2CSSTOs%2CHistory.pdf
https://github.com/astroclubiitk/Space-The-Final-Frontier-2021/blob/main/Slides/Space%20Exploration_2_%20Aerodynamics%2CSSTOs%2CHistory.pdf


Project Report: Orbital Perturbations

da
dt
=

2a2v
µ

v̇d.ev (21)

where

– µ = Product of gravitational constant and mass of earth
– v = Speed of the object
– ev = Unit vector in the direction of v
– v̇d = Acceleration of object due to drag

v̇d = −
1
2
ρBC |v − V |2 ev−V (22)

where

– V = Atmospheric wind velocity vector
– ev−V = Unit vector of the object’s motion relative to the

atmospheric wind.

The rate of change of mean semi-major axis due to atmospheric
drag is given by:

dad

dt
= −a2

mµ
−1ρBCv3F (23)

where am is the mean semi-major axis and the dimensionless
wind factor F is given by

F =
|v − V |2

v
ev−V .ev (24)

Integrating equation (23) from t1 to t2, we get:

∆
t2
t1 ad = −µ

t=t2∑
t=t1

a2
mρBCv3F∆t (25)

where ∆t is the time step for numerical integration Thus, the BC
can be computed by:

BC = −
µ∆t2

t1 ad∑t2
t1 a2

mρv3F∆t
(26)

The following plot shows the variation of ballistic coeffi-
cients with NORAD ID of the satellite

4.3. Effect

Assuming circular orbit motion of the satellite in a uni-
form density atmosphere, we can conclude the following effects:

Since N=0, the orbital plane doesn’t change, so,

1. Ω̇ = 0
2. d

dt i = 0

Effect on semi-major axis, or, radius in this case:
Since e=0, from eq. 11,

ȧ = −

√
a3

µ

ρ

m
CDAv2 = −

√
a3

µ

µ2

a2

ρ

B
= −
√

aµρB (27)

Integrating this equation w.r.t. time, we obtain:

a(t) =
( √

a(0) −
√
µ
ρ

B
t
)2

(28)

But in the real world, the atmospheric density is rarely
constant and varies with time, ρ(t). This is primarily due to two
factors as follows:

Exponential Growth Since −→r varies with time, we can also
write ρ(r). As we come closer to earth’s surface, the density
begins to grow exponentially.

Solar Activity Unpredictable solar activity, like solar wind may
effect the atmospheric composition, especially in the iono-
sphere while simultaneously changing the earth’s EM field.

Secondly, the orbits of the satellites are almost always
eccentric. Eccentric orbits are particularly prone to drag. If e is
very small and a is sufficiently high, we can assume that the ma-
jority of the drag effects will occur near and at perigee. Conse-
quently, the apogee height will decrease with time, which will be
quite significant. The resulting equations are extremely compli-
cated and difficult to integrate and hence, an Exponential Decay
model is used to calculate ∆e

4.4. Countering the effects

Drag will inadvertently lead to loss of velocity, so we
need the satellite to have enough ∆v (m/s /year) to counteract the
effects of drag and maintain it’s orbit. This is also known as ∆v
budgeting.

Despite accurate models, we are unable to decide the pre-
cise ∆v budget due to the unpredictable pattern of solar winds.

Highly efficient maneuvers are done to gain the ∆v lost
to drag. This is known as station-keeping. Since there is only
a limited amount of fuel available to the satellite, it’s orbit will
eventually decay, bringing it’s life to an end by burning up in the
atmosphere. The "lifetime" of a satellite is defined by the time it
takes to cross the Kármán Line (100 km).

5. Non-Spherical Earth

So far we have considered earth as a perfectly spherical
homogeneous body but earth neither has a homogeneous mass
distribution nor is a spherical body. Consequently, the several
attributes of the Earth’s shape and composition have noticeable
affects on a satellite’s orbit around earth and therefore cannot be
neglected.
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For a spherical earth, dU is symmetric

dU = −
2πR2Gσm2sinθ

ρ
dθ (29)

The actual gravity is not precisely spherical as density
varies throughout the earth. The result is a distorted potential
field (geoid) as shown below.

Fig-2: Earth’s Potential Field

5.1. Measurement of the potential field of the earth

Different methods and computational techniques have
been invented in due time to reflect various types of input gravity
or gravitational gradient data. Initially, the geoid determination
relied on surface gravity data defined as first-order gravity gradi-
ents. Second-order gravity gradients are measurable at the land
surface by the torsion balance. In the new millennium, several
gravity-dedicated satellite missions have already been realized.

5.1.1. LAGEOS (Laser Geodynamics Satellites)

Precisely measuring the trajectory of a satellite as it or-
bits the earth then accounting for drag, third-body dynamics, etc.
and remaining perturbation must be caused by gravitational po-
tential. The orbits of the LAGEOS satellites are measured pre-
cisely by laser reflection.

Fig-3: LAGEOS Satellite

5.1.2. GRACE

Measuring satellites position from earth is inaccurate so
the GRACE project measures the relative position of two adja-
cent satellites. Relative motion yields gradient of the potential
field and direct construction of U(−→r ) can be made.

Fig-4: GRACE Satellite

5.2. Potential Equation

The potential has the form:

U(ϕgc, λ, r) =
µ

r
+ Uzonal(r, ϕgc)

+ Usectorial(r, λ) + Utesseral(r, ϕgc, λ) (30)

Fig-5: Earth’s Potential Coordinate System

where

– ϕgc = declination from equatorial plane
– λ = right ascension, measured from Greenwich meridian
– r = radius

5.2.1. Zonal Harmonics

The zonal spherical harmonics are special spherical har-
monics that are invariant under the rotation through a particular
fixed axis.They only vary with latitude. These have the form:

Uzonal(r, ϕgc) =
µ

r

∞∑
i=2

Ji

(Re

r

)i

Pi(sin(ϕgc)) (31)

Fig-6: Zonal Harmonics

where

– Re is the earth radius
– Pi are the Legendre Polynomials
– The Ji are determined by the Geodesy data
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5.2.2. Sectorial Harmonics

These have the form:

Usectorial(r, λ) =
µ

r

∞∑
i=2

(Ci,sect cos(iλ)

+ S i,sect sin(iλ))
(Re

r

)i

Pi(sin ϕgc) (32)

where, Ci,sect and S i,sect are determined from Geodesy data

5.2.3. Tesseral Harmonics

These have the form:

Utesserall(r, ϕgc, λ)

=
µ

r

∞∑
i, j=2

(Ci, j cos(iλ) + S i, j sin(iλ))
(Re

r

)i

Pi, j(sin ϕgc) (33)

where, Ci, j and S i, j are determined from Geodesy data

5.3. The J2 Perturbation

Many texts ignore the Sectorial and Tesseral Harmonics
because the effect often appears random or hard to predict. Even
in Zonal harmonics all harmonics,except first zonal harmonics,
shall be ignored for simplicity.

∆UJ2(r, ϕgc) = −
µ

r
J2

(Re

r

)2 [
3
2

sin2(ϕgc) −
1
2

]
(34)

where value of J2 is 0.0010826. The above equation is expressed
in ECI Frame. But to use our perturbation equations, we need a
force expressed in the R-T-N frame.

Since sinΦgc =
z
r ,

∆UJ2(r, ϕgc) = −
µ

r
J2

2

(Re

r

)2 [
3z2

r2 − 1
]

(35)

The perturbation force is calculated as,

−→
F = −

∂UJ2

∂r
êR +

∂UJ2

∂z
êz

= −µJ2R2
e

[
3z
r5 êz +

(
3

2r4 −
15z2

2r6 êR

)]
(36)

We need to write above equation in R-T-N frame.To convert a
PQW vector to ECI, we use

−→r ECI = R3(Ω)R1(i)R3(ω)−→r PQW = RPQW→ECI
−→r PQW (37)

RPQW→ECI =

cosΩ − sinΩ 0
sinΩ cosΩ 0

0 0 1


1 0 0
0 cos i − sin i
0 sin i cos i

cosω − sinω 0
sinω cosω 0

0 0 1

 (38)

An additional rotation gives us the R-T-N frame,

RPQW→ECI =

cosΩ − sinΩ 0
sinΩ cosΩ 0

0 0 1


1 0 0
0 cos i − sin i
0 sin i cos i

cos(ω + f ) − sin(ω + f ) 0
sin(ω + f ) cos(ω + f ) 0

0 0 1

 (39)

This gives us the expression,

êz = sin i sin (ω + f ) êR + sin i cos (ω + f ) êT + cos iêN (40)

Since z = r sin ϕgc = r sin i sin(ω + f ).This yields the
disturbing force in the R-T-N frame:

−→
F = −

3µJ2R2
e

r4


1
2 −

3 sin2 i sin2 θ
2

sin2 i sin θ cos θ
sin i sin θ cos i


RT N

where θ = ω + f (41)

N = −
3µJ2R2

e

r4 sin i sin (ω + f ) cos i (42)

Ω̇ = −
3µJ2R2

e

hp3 cos i sin2(ω + f )[1 + e cos f ]3 (43)

...using r = p
1+e cos f

dΩ
dθ
=
Ω̇

θ̇
=
Ω̇

h/r2 (44)

Then the average change over an orbit is

dΩ
dθ

∣∣∣∣∣∣
AV

=
1

2π

∫ 2π

0

dΩ
dθ

dθ ⇒
dΩ
dθ

∣∣∣∣∣∣
AV

= −
3
2

J2

(
Re

p

)2

cos i (45)

Page 8 of 13

https://geodesy.noaa.gov/INFO/geodesy.shtml


Project Report: Orbital Perturbations

we can use the fact that n = dθ
dt to get the final expression:

Ω̇J2,av = −
3
2

nJ2

(
R2

e

p

)
cos i (46)

The above equation represents average change in RAAN over
an orbit which is secular in nature.

J2 Nodal Regression: The ascending node migrates opposite
the direction of flight. The equatorial bulge produces an extra
pull in the equatorial plane which creates an averaged torque on
the angular momentum vector. Like gravity, the torque causes

−→
h

to precess as shown in the figure below.

Fig-7: J2 Nodal Regression

For prograde orbit Ω̇ is negative whereas for retrograde
orbit it is positive. Now recall the Argument of Perigee equa-
tion:

ω̇ = −Ω cos i +

√
a(1 − e2)

e2µ

(
−R cos f + T

(2 + e cos f ) sin f
(a + e cos f )

)
(47)

R = −
3µJ2R2

e

r4

(
1
2
−

3 sin2 i sin2 θ

2

)

T = −
3µJ2R2

e

r4

(
sin2 i sin θ cos θ

)
(48)

The argument of perigee (ω) is linked to RAAN (Ω) as,

dω
dθ
= −

dΩ
dθ

cos i +
3J2R2

e

2p2

[
1 −

3
2

sin2 i
]

(49)

...where dΩ
dθ cos i = − 3

2 J2

(
Re
p

)2
(1−sin2i)

⇒ ω̇J2,av =
3
2

nJ2

(
R2

e

p

)2 [
2 −

5
2

sin2 i
]

(50)

Similar to nodal regression, but perigee moves forward or back-
ward, depending on inclination.

Fig-8: J2 Apsidal Rotation

5.4. J2 Effect

The J2 perturbation has significant effect on Ω̇ and ω̇. But
its effect on other orbital elements is usually minor. For example,
ȧ ≈ 0.

Fig-9: Eccentricity Change for
Low-Inclination Orbit

Fig-10: Eccentricity Change for
Mid-Inclination Orbit
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Fig-11: Eccentricity Change for
High-Inclination Orbits

Fig-12: Inclination Change for Eccentric and Circular Orbits

5.5. J2 Special Orbits

Critically Inclined Orbits and Sun-Synchronous Orbits
are two special orbits resulting due to J2 perturbations.

Critically Inclined Orbit: A Critically inclined orbit is the one
where ω̇ = 0. From the equation of ω̇,

4 − 5 sin2 i = 0⇒ i = sin−1

√
4
5

= 63.43o or 116.57o (51)

Molniya Orbit and Tundra Orbit are examples of critically
inclined orbits.

Sun-Synchronous Orbit: These are the orbits that maintain the
same orientation of the orbital plane with respect to the sun. Ω̇
for a sun-synchronous orbit is 0.98550/day or 1.992×10−7rad/s.

6. Positive Perturbations

Even though perturbations, i.e. deviations from ideality
are usually considered to be tough to work with, not all of it’s
effects are considered "bad", or so to say. Some of it’s effects are
pretty useful as well:

6.1. Lift and Slow Landing

Yes, the same drag that is responsible for perturbations
in orbits of various rockets, spacecrafts and satellites can also
produce lift, denoted by CL, which can happen in the direction
of eR or even eN! Conventional designs such as that of a plane
utilize this to keep the object in air.

But the most interesting aspect of it is the gradual re-
entry of spacecrafts (a space-shuttle, for example) into the earth’s
atmosphere. Obviously, re-entry from such an altitude ( 400 km
for the ISS) can spell havoc for the spacecraft due to the heat
generated by air friction at such high velocities. To counter this,
the vehicle’s velocity must be reduced significantly. This is done
using the atmosphere as a breaking mechanism which simulta-
neously also provides a decent amount of lift to the vehicle.

6.2. Debris Management

Although the expected lifetime of any satellite in the
geosynchronous orbit is million of years, it is practically impos-
sible for them to remain functioning for so long. Hence they are
decommissioned and declared as space junk which could poten-
tially prove harmful to other satellites in orbit. Hence, they need
to be get rid of.

6.2.1. Graveyard Orbits

The energy required for the re-entry of a satellite into
earth’s atmosphere is approx. ∆V = 1500 m/s which requires
a ton of fuel. Hence it is impractical to do so. A much easier
and less energy intensive way is to park it into one of the super-
synchronous orbit, for example, the Graveyard Orbit, the ma-
neuver from Geo-stationary orbit requires only a ∆V of about
11 m/s. This can be achieved via small perturbations to the orbit
within a few months.

Fig-13: Achieving a Graveyard Orbit

6.2.2. Disposal Orbits

Another possible and more widely-accepted option is to
move the satellite into disposal orbits. But this can be achieved
only for satellites in LEO. Eventually, due to drag forces, they’re
able to slow down enough for their orbits to decay to a point
where they are able to burn up in the upper atmosphere. This
process can be typically finished within a year of end-of-life.
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6.3. Lower ∆V requirement/ Gravity Assist

The most widely accepted measure of energy require-
ments to complete a maneuver in space is via it’s ∆V require-
ments, i.e. the velocity change it requires to reach to a particular
point or orbit. Although using conventional trajectory, we can re-
duce this requirement, but to optimize it, we can use the presence
of other heavenly bodies’ gravitational forces to our benefit.

6.3.1. Using Lunar Gravity

Achieving a stable Low-Earth parking orbit requires sig-
nificantly lower ∆V than direct transfer into GEO. Hence, it
makes sense to first transfer the satellite/ payload into LEO be-
fore going higher up. In order to achieve GEO, or higher orbits,
the gravitational pull of the moon can be exploited in order to
reduce the potential energy barrier required to cross and move
into a GEO.

6.3.2. Interplanetary Superhighway

A similar, but a little complicated maneuver can also
be done for movement across the solar system. Using the
gravitational forces exerted by the Gaseous Giants, especially
Jupiter and Saturn, spacecraft can be propelled further with
lower energy budget, often using gravitational turns. This
phenomenon was used to send multiple spacecrafts such as
Voyager 1, Voyager 2, Pioneer, etc to even leave the heliosphere!
The optimum paths for lowest energy requirement made by the
alignment of planets in our solar system, thus generates the
Interplanetary Superhighway.

Fig-14: Interplanetary Superhighway

6.4. Asteroid Protection

Several rogue asteroids originating from the kupier belt
travel with incredible speeds which could spell havoc for us if
they crashed into the earth.

6.4.1. Natural

For millions, if not, billions of years, the gaseous giants,
especially Jupiter has protected earth from these type of impacts
by slowly capturing the asteroids, over thousands of years into
it’s stable Lagrange points - L4 and L5. These asteroids share
the orbit of Jupiter usually forming what appears to a cloud at
the Lagrange Points. They are also known as Trojans.

Fig-15: Jupiter’s L4 and L5 points

6.4.2. Artificial

But as always, there are asteroids that Jupiter is unable
to capture, especially the ones that possess weird orbital planes.
The ones that have a potentiality to crash into earth in the near fu-
ture are the most dangerous ones, for which, NASA has in place
a planetary defense system for the NEOs (Near Earth Objects).
If the due date of collision in far, the path of the object can be
changed by applying carefully calculated impulses resulting in
gradual but substantial change of the object’s trajectory over the
next few passes.

7. Newton’s n-body problem

7.1. What it is?

While dealing with naturally occurring systems, it is
hard, if not impossible to find a system consisting of only 2
bodies. We often encounter multiple celestial bodies interacting
with each other, while remaining in a steady and stable orbit. Al-
though we usually reduce it to a two body problem while solving
for orbits, for example in the case of our solar system, consisting
of 8 planets with a star at it’s center, it’s much more difficult to
ignore the effects of the remaining bodies in a system with com-
parable masses, take our nearest stellar neighbour, Proxima Cen-
tauri system. Consisting of 3 stars revolving around each other,
the system is a perfect example of the 3-body problem.

7.2. Derivation of equations

While calculating the forces acting, trajectory and orbits
of each and every system, it is advised to take into account the
movement of the center of mass of the entire system. The po-
sition of the center of mass of a system with n masses can be
calculated as:
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−−→rcm =

∑n
i=1 mi

−→ri∑n
i=1 mi

(52)

Now, since no external force will be acting on it, the cen-
ter of mass will remain stationary while the bodies move around
it. Hence, on differentiation the above equation twice, we can
equate the velocity and acceleration of the center of mass to 0,
i.e.

d
dt
−−→rcm =

−−→vcm = 0,
d2

dt2
−−→rcm =

−−→acm = 0 (53)

Moreover, no external torque will be acting over the sys-
tem. Hence, the angular momentum of the system about it’s cen-
ter of mass will remain constant as well:

n∑
i=1

mi[
−→
(ri −

−−→rcm) × −→vi ] = 0 (54)

As can be seen from the above equations, if we know the
initial condition of the system, it is easy to predict the motion of
each and every object in a 2-body system. However things start
to get complicated if the no of objects involved are more than 2,
resulting in beautiful systems. Our focus, for this project will be
on the 3-body system.

7.3. 3-Body problem

Let us consider 3 bodies, namely m1, m2 and m3, orbiting
around each other. The gravitational force acting on each one of
them can be written as:

mir̈i = G
mim j

ri j
r̂i j +G

mimk

rik
r̂ik (55)

... where i, j, k ∈ {1, 2, 3} and i , j , k , i

Now, since the 3 masses affect each other, the above
forms a coupled system of equations, the solution of which is
given by the partial differential equations:

d−→ri

dt
=

dT

d−→pi
,

d−→pi

dt
= −

dT

d−→ri
, (56)

where

– T = total energy of the system = potential + kinetic
– pi = momentum of the ith body
– ri = position of the ith body

The above system of equations is non-integrable, hence,
we’re unable to find a general equation that can give us the tra-
jectory of each of the bodies. This results in multiple possible
periodic solutions, depending on the initial conditions, some of
which are as follows, assuming equal masses of all 3 objects:

Fig-16: Possible stable periodic 3-body orbits

7.4. Chaos Theory

As to why the system of partial differential equations are
non-integrable are due to the physical error that can be uninten-
tionally induced. These errors can be due to multiple reasons, the
primary one being observational.

As is always the case, observational error creep in re-
sulting in results that are somewhat off. In this case, we cannot
measure precisely the location or velocity of the planets or stars
in question. Hence, the derived solution set will yield accurate
answers initially but gradually over long time, say a few cen-
turies, may not be quite right to accurately predict the motion of
the celestial bodies.

Hence, over the years, these errors pile up resulting in a
completely different orbits, caused by minuscule perturbations
during each complete periodic motion. That’s the practical ap-
plication of butterfly effect, originating from chaos theory.

7.5. Lagrange Points

Now, if we take a stable periodic 3-body system, and re-
duce the mass of one of the bodies to 0 (or, tending to 0), we
obtain some interesting results. It now effectively behaves as the
conventional 2-body system.

The 0 mass object doesn’t apply any force to the sys-
tem, rather, if positioned correctly, can move in a periodic mo-
tion with the other two due to their gravitational forces equalling
to the centripetal force required for the above motion. These se-
lected points at which this phenomenon can occur are known as
Lagrange points. Lagrange points exist for a general n-body sys-
tem as well, but we’ll limit ourselves to the Lagrange points of a
2-body system.

In a stable periodic 2-body system, there exist 5 Lagrange
points. Of the five Lagrange points, three are unstable and two
are stable. The unstable Lagrange points - labeled L1, L2 and L3
- lie along the line connecting the two large masses. The stable
Lagrange points - labeled L4 and L5 - form the apex of two
equilateral triangles that have the large masses at their vertices.
L4 leads the orbit of earth and L5 follows.
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Fig-17: The five Lagrange points (Wikipedia)

8. Case Study: James Webb Space Telescope

8.1. Introduction

The highly awaited James Webb Space Telescope
(JWST) was launched on December 25, 2021. Before diving into
the details of its special orbit, let’s get to know more about it.

The shape and design of the JWST are quite unique. Be-
neath, it has got an unusual five-layered tennis-court sized sun
shield which is quite thin. The shield is made out of a material
called “Kapton” and it basically helps to keep the telescope el-
ements cold (the telescope operates at a temperature of about
50K) and away from heat radiations coming from the sun which
may alter the efficiency of the telescope. The shield faces to-
wards the sun.

The main aim behind maintaining such a low tempera-
ture at the telescope is connected to the kind of observations it
would make. Unlike the Hubble Space Telescope, which majorly
captured the light of the UV and visible region, the JWST would
be majorly observing the infrared light, and thus other radiations
coming from the sun would cause interference to it.

Infrared light, over the years, has helped uncover myster-
ies about a lot of distant galaxies and bodies which were millions
of years old. It is believed that the JWST will further help us dive
deep into ancient space.
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8.2. Positioning at L2

Now comes another point to ponder upon, how is it en-
sured that the sun shield faces the sun at all times while orbiting?
The answer to this is the special “Second Lagrange point”, also
called the L2 point, which is situated at a distance of about 1.5
million kilometres from the earth.

At the Lagrange points, as stated above, the gravitational
pull of two large masses precisely equals the centripetal force
required for a small object to move with them. In the case of
JWST, the Sun and the Earth make the two large masses while
the telescope represents the small object.

Why only L2? Because the location is ideal for astron-
omy as the telescope would be able to efficiently communicate
with the Earth, and keep the Sun, Earth and Moon to one side to
ensure solar power supply and provide a clear view of the deep
space on the other side.

Note that L2 is a metastable point and thus, the telescope
will drift away into an orbit around the Sun. The balance of the
combined gravitational pull of the Sun and the Earth at the L2
point would ensure that JWST will keep up with the Earth as it
goes around the Sun, which will keep it out of the shadows of
both the Earth and the Moon, allowing it to operate 24x7. Thus,
the amount of fuel spent on maintaining this orbit is also a bit
less due to this reason.

8.3. Intersting Facts

In spite of this, the time span of the JWST would be very
limited. It is expected that the mission would only be about 10
years long as eventually, the telescope would run out of fuel
to support its orbit. This is unlike the Hubble Space Telescope
which has been in service for about 30 years now. The large dis-
tance of the JWST from the Earth also makes it practically im-
possible to make any repairs at all in case anything goes wrong.

The grandness of the JWST can be understood by the
fact that it would be about 100 times more powerful than the
Hubble Space Telescope. The gold-plated mirror of JWST, when
fully unfolded measures roughly 21 feet, much larger than that of
Hubble (around 8 feet). Due to this large size, the mirrors had to
be actually folded to be placed in the rocket’s fairings and were
designed keeping in mind the style of Japanese Origami.

Now, coming to the launch specifications of the tele-
scope, Korou was chosen as the launch site due to its closeness
to the equator which would actually provide an additional boost
to the launch thanks to the spin of the earth. This is quite essen-
tial for a heavy telescope like the JWST, and for the same reason,
the European Space Agency’s Ariane 5 rocket was chosen, being
one of the safest options available for heavy launches.

Page 13 of 13

https://www.amazon.in/Orbital-Mechanics-John-Prussing/dp/0199837708
https://tspace.library.utoronto.ca/bitstream/1807/19186/6/Eyer_Jesse_K_200911_PhD_thesis.pdf
https://control.asu.edu/MAE462_frame.htm
https://www.jwst.nasa.gov/
https://oceanservice.noaa.gov/facts/geodesy.html
https://github.com/mws262/MAE5730_examples/tree/master/3BodySolutions

	Introduction
	Reasons for Perturbations
	Mathematics
	Setting up the system
	Calculating 
	Calculating 
	Calculating 
	Calculating 
	Calculating 

	Drag Perturbations
	Calculation
	Estimation of Ballistic Coefficients
	Effect
	Countering the effects

	Non-Spherical Earth
	Measurement of the potential field of the earth
	LAGEOS (Laser Geodynamics Satellites)
	GRACE

	Potential Equation
	Zonal Harmonics
	Sectorial Harmonics
	Tesseral Harmonics

	The J2 Perturbation
	J2 Effect
	J2 Special Orbits

	Positive Perturbations
	Lift and Slow Landing
	Debris Management
	Graveyard Orbits
	Disposal Orbits

	Lower V requirement/ Gravity Assist
	Using Lunar Gravity
	Interplanetary Superhighway

	Asteroid Protection
	Natural
	Artificial


	Newton's n-body problem
	What it is?
	Derivation of equations
	3-Body problem
	Chaos Theory
	Lagrange Points

	Case Study: James Webb Space Telescope
	Introduction
	Positioning at L2
	Intersting Facts




